WRLA 2004 Preliminary Version

Representing the MSR Cryptoprotocol
Specification Language in an Extension of
Rewriting Logic with Dependent Types

[liano Cervesaton]

ITT Industries, Inc., Advanced Engineering and Sciences Division
Alexandria, VA 22303, USA

Mark-Oliver Stehr

University of Illinois at Urbana-Champaign,
Computer Science Department, Urbana, IL 61801, USA

Abstract

This paper presents a shallow and hence efficient embedding of the security protocol spec-
ification language MSR into rewriting logic with dependent types, an instance of the open
calculus of constructions which integrates key concepts from equational logic, rewriting
logic, and type theory. MSR is based on a form of first-order multiset rewriting extended
with existential name generation and a flexible type infrastructure centered on dependent
types with subsorting. This encoding is intended to serve as the basis for implementing
an MSR specification and analysis environment using existing first-order rewriting engines
such as Maude.

1 Introduction

MSR originated as a simple logic-oriented language aimed at investigating the de-
cidability of protocol analysis under a variety of assumptions [8]. It evolved into
a precise, powerful, flexible, and still relatively simple framework for the specifi-
cation of complex cryptographic protocols, possibly structured as a collection of
coordinated subprotocols [35]]. It uses strongly-typed multiset rewriting rules over
first-order atomic formulas to express protocol actions and relies on a form of ex-
istential quantification to symbolically model the generation of nonces and other
fresh data. Dependent types are a useful abstraction mechanism not available in
other languages. For instance, the dependency of public/private keys on their owner

1 Email:[iliano@itd.nrl.navy.mil
2 Email: [stehrfuiuc.edu
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

file:iliano@itd.nrl.navy.mil
file:stehr@uiuc.edu

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE
2004 N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Representing the M SR Cryptoprotocol Specification Languagein an
Extension of Rewriting L ogic with Dependent Types

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinoisat Urbana-Champaign Department of Computer
Science 201 N. Goodwin Avenue Urbana IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

This paper presents a shallow and hence efficient embedding of the security protocol specification language
M SR into rewriting logic with dependent types, an instance of the open calculus of constructionswhich
integrates key concepts from equational logic, rewriting logic, and type theory. M SR is based on a form of
first-order multiset rewriting extended with existential name generation and a flexible type infrastructure
centered on dependent typeswith subsorting. Thisencoding isintended to serve asthe basis for
implementing an M SR specification and analysis environment using existing first-order rewriting engines

such as Maude.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
ABSTRACT

a REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE SAR
unclassified

17. LIMITATION OF

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON
22

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CERVESATO AND STEHR

ocCC

MSR | "7 RWLDT @, | KWL
(Maude)

Figure 1. Architecture of the Embedding of MSR into Rewriting Logic

can be naturally expressed at the type level. Finally, MSR supports an array of use-
ful static checks that include type-checking [4]] and data access verification [6].

This work outlines an encoding of the core of MSR into rewriting logic (RWL),
to be more precise into its extension with dependent types (RWLDT). Rewriting
logic [[L1]] draws on the observation that many paradigms can naturally be captured
by conditional rewriting modulo an underlying equational theory, the theory of
multisets being a particularly important case for the specification of concurrent
systems and protocols. Recently a combination of equational logic and rewriting
logic with dependent types has been studied in [[14]] under the name open calculus
of constructions (OCC). In this paper we show that a restricted predicative instance
of OCC, that we call rewriting logic with dependent types (RWLDT), can be used to
represent typed MSR specifications in a way which preserves all type information.
RWLDT does not natively support the expression of existential name generation:
our encoding implements it with counters. Moreover, ensuring the executability of
the resulting code required some care.

Composing the mapping from MSR into RWLDT with a mapping from RWLDT
into RWL, which has already been implemented as part of the OCC prototype [{14]],
we obtain an encoding from MSR into RWL, which can serve as the basis of an ex-
ecution environment for MSR in a RWL-based language such as Maude [9]]. This
two-level approach, which is summarized in Figure [[l has some advantages over a
direct mapping into RWL. The first is modularity and separation of concerns: the
mapping from MSR into RWLDT is only concerned with the dynamics (given by
the rules) but preserves the static part (given by declarations, types, and terms). The
second advantage is that RWLDT seems to be the right level for user interaction,
because terms and types closely correspond to those of MSR. Finally, the preser-
vation of types and the fact that RWLDT is a sub-logic of OCC provides suitable
level of abstraction for formal reasoning, a possibility that is not the subject of this
paper, but that we hope to explore in the future.

This work serves as the basis for a forthcoming prototype of MSR, which will
eventually run on top of Maude [9]. The linguistic affinity between MSR and
RWLDT allow for a much simpler construction than a direct implementation. Map-
ping MSR into the popular CAPSL Intermediate Language [LL0] would have been
more difficult, because MSR has a much richer typing infrastructure than CIL.

The remainder of this paper is organized as follows: We introduce MSR and

2

CERVESATO AND STEHR

RWLDT in Sections Bland @l respectively. In Section Bl we define the mapping from
MSR into RWLDT, state its key properties, and outline some simple optimizations.
It is applied to our running example, the Otway-Rees protocol, in Section 6. We
conclude this paper with a discussion of limitations, implementation aspects, and
possible extensions of our approach. First, some notation.

2 Notation

We use [] to denote the empty list and a comma to denote list concatenation. We
write identifiers ranging over lists in bold, and indicate their length with a super-
script. Therefore, X™ denotes a list of n elements. We will generally omit the
length information when irrelevant or easily deducible from the context. Occasion-
ally, we write | X | for the length of a list X. We write X; (or X) for the i-th
element of X. We abbreviate constructions over all elements in a list as construc-
tions over the list itself: for example, we may write (M N™) for (M N;...N,),
andvVX":U" forVX,:U,... VX, :U,.

3 The MSR Cryptoprotocol Specification Language

The syntax of instances of MSR tailored to specific security protocols has been pre-
sented in [4)5]. Here, we will instead concentrate on a more abstract syntax, cur-
rently undergoing formalization in [[Z], which allows the user to declare operators
such as message concatenation and encryption rather than having them hard-coded
in the language. The core of the syntax of MSR is given in the following table:

Terms M,N :==X | MN
Types T =M | state ‘ princ | msg ‘ {X : T}T'
Kinds K = type ‘ {X : T}K
Contexts D =. | DX:K | D,X:T
States S =- | SSM
Rules p n= RULE j: VX :U.(S —3Y : V.9
Roles P %= ROLE?:VP :princ.dL:T.p
| ROLE 4 : FOR P :princ.3L:T.p

MSR is based on first-order terms, that for simplicity we limit to identifiers (X)
and application. Here, X can be either a bound variable or a previously declared
identifier. For conciseness, we describe atomic types (i.e., objects of kind type)
as if they were terms. Reserved atomic types include the type of states (state),
principals (princ) and messages (msg). We write { X : T'}T" for a dependent type,
simplifying this syntax into 7" — 7" when X does not occur free in 7". A context
(called signature in [4)3]), is a list of declarations of term constants and type fami-
lies. A state is a comma-separated multiset of terms (of type state). We later use
the comma for message concatenation as well, an overloading that is disambiguated

3

CERVESATO AND STEHR

by the surrounding context. A rule relates two states S and S’. The latter can be
prefixed by a sequence of existential declarations (e.g., for creating nonces), while
other variables in the rule will often be universally quantified at its head. Roles are
nonempty sequences of rules prefixed by zero or more existential predicate decla-
rations. We assume that MSR specifications satisfy a restricted format, where the
existential predicates are used to introduce local intermediate states for sequential-
izing the rules inside a role. A role has a distinguished owner P, which can be
either an arbitrary principal in generic roles, or a fixed principal (e.g., a server) for
anchored roles, that are introduced by the keyword ror (which is not a binder).

MSR’s actual syntax, as described in [4)5/7] has other constructions, that we
either ignore for simplicity or leave out for future work. In particular, we assume
that MSR’s native subtyping is emulated by explicit coercions, that MSR’s module
structure has been expanded into a single sequence of declarations, and that all
typing information is explicit, while MSR allows pointwise reconstruction. Simple
preprocessing or standard techniques suffice to account for these discrepancies.
In this paper, we do not treat other features of MSR, in particular guarded rules,
equations, and a syntactic check known as data access specification. They will be
the subject of future work.

We will rely on the Otway-Rees authentication protocol [[12] to illustrate the
use of MSR. In this protocol, an initiator, A, wants to obtain a short-term secret
key k4p to communicate securely with a responder B. They rely on a server S,
with whom both share long-term secret keys k45 and kpg respectively, to generate
this new key. The “usual notation” for this protocol is as follows:

(i) A— B:n,A,B,{na,n, A, B},

(i) B— S:n,A B,{na,n, A B}i,s,{nB,n, A, B}y
(1) S —= B :n,{na,kaptrss, {ns, kaptips
(iv) B — A:n,{na, kap}e,q

Here, A and B range over arbitrary principals, S is a fixed principal, the key server.
Moreover, n, n4 and np are nonces, freshly generated values aimed at avoiding the
replay of old messages.

As mentioned earlier, we assume appropriate declarations of types other than
princ, state and msg and their elements. For this example, we rely on the type
nonce, type families 1tK and stK (for long- and short-term keys, respectively),
and concatenation (overloaded as the infix “;”) and encryption (written {_}) as
additional message constructor. We use the state predicate n for representing mes-
sages in transit on the network. The superscripts p, n and k represent coercions from
principals, nonces and short-term keys to messages, respectively and 1 denotes the
coercion from long-term keys to the shared keys expected by the encryption func-
tion (full MSR uses subsorting instead). The complete MSR specification can be

CERVESATO AND STEHR

found in [4]. Here we show only the generic role for the responder (B):

ROLE 2 : VB : princ.
AL : {B : princ}princ — nonce — nonce — (1tK B S) — state.
/VA :princ. Vn : nonce. Vkpgg : (ltK B S) VX :msg.
N (nn,AP, BP, X) — dnp : nonce.
N (nn’ AP, BP’ X, {n%a nn’ AP, Bp}k%s):
\ (L B Anng kgs)

RULE 21 :

(VA I princ. Vn,nA :nonce. VY : msqg .
RULE 22 : | Vkps: (1tK B S).Vkap : (stK A B).
\ (2, Y, {n, K5}), (L B Annp kps) — n(n?,Y)

This role is generic and has two rules which are both in the scope of the quantifiers
for B and L. In contrast, the role for S would be an anchored role, since S is a fixed
principal.

The operational semantics of MSR [4}5] uses transition judgments that trans-
form configurations of the form [S]&. Here S is an MSR state, R is an active roles
set which collects the active roles, i.e., instantiated and possibly partially executed
roles, available at the next step, and Y. is an MSR dynamic context (called signature
in [443]), which accounts for all the dynamically generated fresh constants avail-
able to R in state S. Using a slightly richer syntax than [4}5] we write an active
role in the form ACTROLE 7 : FOR A : princ. wiTH N : T . p (again FOR
and wIiTH are no binders), meaning that it is the instance of either a generic role
ROLE ¢ : VP : princ. dL : T'. p with P instantiated by A and L instantiated by
N, or the instance of an anchored role ROLE ¢ : FOR A : princ. dL : T'. p with
L instantiated by N.

In this paper we initially rely on two judgment forms to describe transitions:
Given declarations D and roles P, the judgment D, P F [S]& — an [S]E de-
notes the full instantiation, i.e., instantiation of all outer universal and existential
quantifiers, of the role 7 (A and IN define the particular instantiation). We write
D,Pt+[S)E — BAN [S"]& to denote a transition resulting in the application of a
rule j from the acti{ie role 7 (the instance with A and V), followed by the removal
of the active ¢ if it has been fully executed. If one of these transitions can be de-
rived we simply write D, P I [S]& —s 5 [S']%. The rules for a marginally more
abstract version of this semantics can be found in [4,5]].

4 Rewriting Logic with Dependent Types

The open calculus of constructions (OCC), from which we derive the rewriting
logic with dependent types (RWLDT) by instantiation and restriction, is a family
of type theories that are concerned with three classes of terms: elements, types and
universes. Types serve as an abstraction for collections of elements, and universes

5

CERVESATO AND STEHR

as an abstraction for collections of types.

OCC is parameterized by OCC signatures defining the universe structure. In
this paper we use a fixed signature ¥ = (S, Type, :, R, <) with predicative uni-
verses S = {Type, Typey, Typey, - - - }, which form a cumulative predicative hier-
archy. This means that we have Type : Type; : Types..., a subtyping relation
Type < Type; < Types ... (also called subuniverse relation), and (s, s, s L s') €
R for all 5, s' € S, where LI denotes the least upper bound w.r.t. <3|

The formal system of OCC is designed to make sense under the propositions-
as-types interpretation, where propositions are interpreted as types and proofs are
interpreted as elements of these types. Since in OCC there is no a priori distinction
between terms and types, and furthermore between types and propositions, we use
all these notions synonymously.

OCC has the standard constructs known from pure type systems (cf. [[1J14]15]])
and a few additional ones. An OCC term can be one of the following: a universe
s, a variable X, a typed \-abstraction [X : S|M, a dependent function type {X :
SYT, a type assertion M : T, an e-construct ¢ A to denote an irrelevant proof
of a proposition A, a propositional equality M = N, or one of three flavors of
operational propositions, written as || A, !l A, or 77 A. Here and in following we
usually use M, N, P, Q, S, T, U, V, A, and B to range over OCC terms, and
X, Y, Z to range over names. Operational propositions can either be structural
propositions designated by ||, computational propositions designated by !!, or an
assertional propositions designated by 77. Subsequently, we use 7 to range over
these three flavors {||,!!, 77}.

OCC contexts are lists of declarations of the form X : S. The empty context is
written as []. Typically, we use I" to range over OCC contexts.

An OCC specification is simply an OCC context ' in this paper. Such a spec-
ification can introduce rewrite predicates by declarations of the form R : {Y :
SHY': S} T — type. The idea is that each rewrite predicate can be regarded as a
labeled transition system, which can be executed in a very similar way as rewriting
logic specifications. Note that R : {Y : S}HY’ : S} T — Type is the declaration
of a ternary predicate R where S is the type of states and 7 is the type of actions,
which could range from atomic labels to rewrite proofs, depending on the require-
ments of the application. In the case where the type 7" does not depend on Y and
Y”, this declaration takes the form R : S — S — T — Type.

Since we are working with a predicative instance of OCC, it is entirely straight-
forward to define a model-theoretic semantics based on classical set theory with
suitable universes [14!]. The appropriate level of abstraction for this paper is, how-
ever, the operational semantics, which is given by the formal system of OCC. It is
a direct generalization of the operational semantics of rewriting logic [[L1]] and its
membership-equational sublogic [2] as implemented in Maude [9]].

3 The effect of this choice of R, a standard parameter for pure type systems [[T]], is that for arbitrary
types S : s (in a context ') and T : s’ (in a context ', X : S) with s,s' € S we can form the
dependent type {X : S}T : ¢" (inT) for s = sU 5.

6

CERVESATO AND STEHR

The formal system of OCC defines derivability of OCC judgments [' - J and

has been shown to be sound w.r.t. the set-theoretic semantics [[14]]. For brevity we
only give an informal explanation of all judgments and their intuitive operational
meaning.

The type inference judgment I' = M —: S asserts that the term M is an element
of the inferred type S in the context I'. Operationally, I' and M are given and
S is obtained by syntax-directed type inference and possible reduction using
computational equations modulo the structural equations of I'.

The typing judgment I' = M : S asserts that M is an element of type S in
the context ['. Operationally, I', M and S are given and verifying I' = M : S
amounts to type checking. Type checking is always reduced to type inference
and the verification of an assertional subtyping judgment.

The structural equality judgment ' & || (M = N) is used to express that M
and N are considered to be structurally equal elements in the context I'. Oper-
ationally, structural equality is realized by a suitable term representation so that
structurally equal terms cannot be distinguished when they participate in com-
putations.

The computational equality judgment T' = ! (M = N) is the judgment that
defines the notion of reduction for the simplification of terms. The judgment
states that the element M can be reduced to the element N in the context I'.
Operationally, I' and M are given and N is the result of reducing M using the
computational equations in [' modulo the structural equations in I'.

The assertional judgment I' = 77 A states that A is provable by means of the
operational semantics in the context I'. Operationally, I" and A are given and
the judgment is verified by a combination of reduction using the computational
equations and exhaustive goal-oriented search using the assertional propositions
in I'. Both processes take place modulo the structural equations in I'.

The assertional equality judgment T' = 7?7 (M = N) states that M and N are
assertionally equal in I', a notion that treats equality as a predicate and subsumes
the structural and computational equality judgments. Operationally, I', M and
N are given and the judgment is verified like other assertional judgments in a
goal-oriented fashion.

The assertional subtyping judgment I' = 77 (S < T') subsumes the assertional
equality judgment and states that S is a subtype of 7" in " as a consequence of
the cumulativity of the universe hierarchy. Operationally, I', S and 7" are given
and the judgment is verified like other assertional judgments in a goal-oriented
fashion.

The computational rewrite judgment T' = 1! (R M M' P) expresses that by
means of the computational rewrite rules specified in ' for the rewrite predicate
R the element M can be rewritten to the element M’ and this rewrite is labeled
by the element P. Operationally, I" and M are given and M’ is computed by the
application of a computational rewrite rule in I' modulo the computational and

7

CERVESATO AND STEHR

structural equations in I'. In addition, an abstract witness P for this rewrite is
constructed.

By fixing the signature at the beginning of this section, we have introduced
a particular instance of OCC. For the purpose of this paper we further restrict
this instance by requiring that specifications use a unique fixed rewrite predicate R
which is declared as R : S — S — T — Type. The idea is that this ternary rewrite
predicate precisely corresponds to the labeled rewrite relation of rewriting logic. To
remind us of this correspondence we refer to this restricted sublanguage of OCC
in the following as rewriting logic with dependent types (RWLDT). Since R is
unique, we can use the usual notation [P] : M = N instead of the less intuitive
(R M N P). Similarly, we use I' = !! [P] : M = N to denote the corresponding
computational rewrite judgment.

5 Mapping MSR to RWLDT

In this section we give a precise definition of our mapping from MSR into RWLDT.
The translations of kinds, types, terms, and states are very direct. The translation of
roles and rules may appear somewhat technical, but the underlying idea is simple.
To make it better accessible to the reader we introduce the mapping of roles and
rules in three steps: In Sections B.JH3.3, we give an initial mapping that is correct
in a rather obvious way, and then we deal with some deficiencies of this mapping
in two further steps in Sections 5.4l and The result is a mapping which is not
only correct but ensures executability of the resulting RWLDT specification (in
the sense of ordinary rewrite systems). It furthermore avoids the introduction of
any superfluous intermediate states that would lead to unnecessary inefficiencies,
especially if we use the result of the translation for symbolic state space exploration.

5.1 Initial Context

The MSR multiset union constructs will be translated to an ordinary RWLDT func-
tion union. To this end, we define initial_context as an OCC context that contains
the following declarations.
There are the structural axioms for multisets:
state ! Type,
empty ! state,
union : state — state — state,
union_comm : H {X, Y. state}(union X Y) = (union YX),

union_assoc : H {X,Y, Z state} (union (union X Y)Z) =
(union X (union Y Z)),
union_id: || {X : state}(union empty X) = X.

4 Compared with [[T4l] we have omitted assertional rewrite judgments in our presentation of OCC,
because we do not need rewrite conditions in this paper. Such conditions are admitted in RWL and
hence in the most general version of RWLDT.

CERVESATO AND STEHR

The initial context also contains the following declarations, which we describe

only intuitively. Their purpose will become clear as we lay out the translation.

princ: Type, msg : Type. The types of principals and messages, respectively.

Tij : princ — T — state. For each role 7 with existential quantifier types T’
and with a rule 7, a token (Tij A IN)) will be used to represent the fact that role 4
has been instantiated with values A and IN.

nat : Type, and 0 : nat and S : nat — nat. Natural numbers are used to index
fresh symbols, i.e., symbols that have not been used in the past.

F : nat — state. AS an invariant of our representation there is a unique (r N)
that holds the next available fresh index N.

V : nat — V. For each type V which can be generated, this function allows
us to index (some of) its elements by natural numbers, a way to generate fresh
symbols of this type.

E: {T : Type}T — state. The term (E T M) expresses the fact that M is

an element of type 7', as part of the state. We will use this predicate only in
Section 5.4

act : Type, A1 : act for each role 7, and aij : act for each of its rules j. These
constants are used to label the rewrite rules resulting from the translation.

5.2 Translating Kinds, Types, Terms, States, and Contexts

For the following we assume that MSR specifications do not use names introduced
by initial_context other than state, princ and msg. We also assume that all
declared and bound variables are distinct. This allows a clear presentation of the
main ideas without worrying about renaming and capturing. We then define the
translation of MSR kinds, types, states, and contexts as follows:

kind(type) = Type
type({X : T}K) {X : type(T)}kind(K)
type(X) =
type(state) = state
type(prlnc) = princ
(
(T
(

type(msg) = msg

type(T' M) = (type(T) term(M))
type({X : T}T') {X = type(T) }ype(T")
term(X) =

term(M) (term(M) term(N))
state() = empty

state(S,S") = (union state(S) state(S"))
state(M) = term(M)

context initial_context

()=
context(D, X : K) = context(D), X : kind(K)
9

CERVESATO AND STEHR

context(D, X : T) = context(D), X : type(T).

Subsequently, (union (Si,...,Sy)) abbreviates (union Sy (union (Sa,...,
Sn))), and (union ()) abbreviates empty. We also refer to this term as the formal
multiset of S1,...,S,.

The adequacy of this translation is expressed by the following theorem:

Theorem 5.1 If D is a well-typed MSR context then:

(i) If K is an MSR kind, then
D+ K kind in MSR iff context(D) t kind(K) : Type; in RWLDT.

(i1) Ifin addition D + K kind and T is an MSR type, then
DF T : K in MSRiff context(D) + type(T) : kind(K) in RWLDT.

(ii1) Ifin addition D + T : K and M is an MSR term, then
D+ M : T in MSR iff context(D) - term(M) : type(T) in RWLDT.

(iv) If S is an MSR state, then
DF S : statein MSRiff contezt(D) & state(S) : state in RWLDT.

Furthermore, D is well-typed iff contezt(D) is well-typed.

Proof Sketch. First of all, it is straightforward to verify that each MSR inference
rule [[7]] can be simulated by one or more inference rules of RWLDT [[14]. As a
consequence, the = direction of the equivalences ({l)—(x) holds.

To deal with the more interesting < direction of these equivalences, we first
observe that several features of RWLDT are not relevant for the purpose of this
proof. Our representation does not exploit higher universes (beyond Typeg) or uni-
verse subtyping in any essential way (the only use of Type; in our representation is
to serve as a type of kinds). Both, computational equations and assertional proposi-
tions of RWLDT are not used. Structural equations are only used to represent MSR
states (multisets) and they are used in such a way that they precisely represent the
MSR syntax. The computational rewrite axioms of RWLDT do not have any im-
pact on type checking, so they can be ignored here. Another major simplification
is that MSR and hence the representation in RWLDT does not use A-abstractions,
and the type assertions and the e-operator of RWLDT are not used either. As a con-
sequence, many of the inference rules of RWLDT [[14] can be ignored or reduced
to trivial cases, because they cannot have been used in the RWLDT derivation or
have only been used in a trivial form. For instance, without A-abstractions and
computational equations the computational equality reduces to structural equality.
Without assertional propositions, inference rules for assertional propositions other
than assertional equality and assertional subtyping are superfluous. Without the
use of higher universes, assertional subtyping coincides with assertional equality
which reduces to structural equality and a-conversion. Now it is easy to verify the
<« direction of ({)—(x) by simulating each inference rule of the simplified RWLDT
using inference rules of MSR [[Z]. A slight remaining difficulty is to overcome the
gap between implicit a-conversion in MSR and explicit a-conversion in RWLDT
(including its more general notion of context), but the proof techniques for pure

10

CERVESATO AND STEHR

type systems used in [[15]] can be easily adapted to our simple setting.
Finally, the proof that D is well-typed iff context(D) is well-typed, can be done
by induction over the length of D using the previous statements. U

It is important to note that this theorem does not imply that each well-typed
RWLDT term in the context context(D) is a representation of an MSR term, type,
or kind. For instance, a counterpart of the RWLDT type Type — Type : Type; does
not exists in MSR. Similarly, we could use A-abstractions and other constructs in
RWLDT, but they do not have counterparts in MSR. In fact, the restricted syntax of
MSR and our representation carves out a sublanguage of RWLDT, and only terms
in this sublanguage are used inside the operational semantics. The specification
itself, however, requires constructs such as structural equations and computational
rewrite axioms, which are outside of this sublanguage.

5.3 Translating Roles and Rules

To further simplify the presentation, we assume that the identifier of the i-th role is
1 and the identifier of its j-th rule is 5. We then define the translation of MSR roles
and rules as follows (using P and P’ to range over role sequences):

e roles(-) = [].
roles(ROLE ¢ FOR A : princ. L : T . p) =
Rri : role(i, A, 3L : T . p).
Toles(ROLE 1:VP :princ.dL: T. p) =
Ri : {P :princ}role(i, P,AL : T . p).
roles(P,P') = roles(P), roles(P’).
e role(i, P,AL : T . p") =
{Z,Z" : nat { L : type(T)}fresh(Z, L, T, Z") —
[a7] : (F Z) = (union ((141 P L),...,(tin P L) (r Z"))),
rule(i, P, L, T, pt),...,rule(i, P, L, T, p?).
e rule(i, P, L,T,ruiE j: VX :U. M —3JY : V.N) =
Rij : {P :princH{Z, 7" : nat }{L : type(T)}
{X : type(U)HY : type(V)}fresh(Z, Y,V ,Z') —
[aij] : (union ((1ij P L), (r Z), state(M))) =
(union ((state(N), (r Z")))).
fresh(Z,YY, VY Z") =
Yi=V{(2)),Y}=Vi(s(2)),..., Y=V, (V" (2)), Z'=s¥(Z).

In the last equation we assume that for type V' there is an injection with the same
name V : nat — V, a declaration that needs to be included in initial_context.

Above we use Aq,..., A, — B to abbreviate A; — ... — A, — B, which
here means that A, ..., A, are conditions. It should also be noted, however, that
the use of conditions here is not essential, because they are all of the form Y =@
and hence can trivially be eliminated. We only use conditions for better readability
and to maintain a more direct correspondence to the MSR syntax.

11

CERVESATO AND STEHR

The idea behind the definition of role is that it maps each MSR role : to several
RWLDT rewrite axioms: There is one rewrite axiom labelled az, representing the
instantiation of this role. In addition, there is one rewrite axiom labelled a7; (gener-
ated by rule) for each of its rules j. The first axiom 23, apart from the generation of
fresh terms needed for the new instance, generates tokens (1i1 P L), ..., (tin P L),
representing the fact that none of the rules of this role have been executed yet. Each
of the remaining axioms azj simulates the corresponding MSR rule j, so that each
application of a rule removes its corresponding token. This realizes the MSR policy
that rules of active roles can only be executed once.

The following lemma expresses that the generation of fresh symbols is correctly
represented in RWLDT.

Lemma 5.2 (Freshness Invariance) Let (D, P) be an MSR specification. The
representation in RWLDT maintains the following invariant: If there is a term of
the form (F (s™0)) in the RWLDT state and no other occurrence of £ then for each
k (including 0) the term (s"**0), and consequently V (s"**0), is fresh, i.e., it does
not occur in any other part of the state.

Proof Sketch. Can be directly verified as an inductive invariant for each of the
RWLDT rewrite axioms in our representation, using our earlier assumption on the
initial context that 0 and s are not used in the MSR specification. O

To express the relationship between MSR and its representation we also need a
representation of dynamic entities such as active roles:

* actroles(-) = empty.
actroles(ACTROLE ¢ : FOR A : princ. WITH N : T. p) =
the formal multiset of all (Tij A IN) s.t. p contains rule j.
actroles(R, R') = (union actroles(R) actroles(R')),
where R and R' range over active role sets.

Recall that ACTROLE 4 : FOR A : princ. WITH IN : T'. p is the form of an ac-
tive role, i.e., one that has been (fully) instantiated and possibly partially executed.
The fact that the active role set contains an active role of this form corresponds to
the fact that for each rule j of the active role (i.e., a rule that has not been executed
yet) the term (Tij A IN) is part of the distributed state in the representation.

The subsequent theorem justifies the use of representations of MSR configura-
tions of a particular form in all the remaining theorems.

Theorem 5.3 (Representation Invariance) Let (D, P) be an MSR specification.
If context(D), roles(P) F ' [P] : M = M' and M is a representation of an
MSR configuration, i.e., of the form (union ((F (s™ 0)), state(S), actroles(R)))
for some n, some MSR state S, and some MSR active role set R, then M’ is a
representation of an MSR configuration as well.

Proof Sketch. Again this is an inductive invariant that obviously holds for each of
the RWLDT rewrite axioms in our representation. U

For the proof of the main theorem, we need the following lemma.

12

CERVESATO AND STEHR

Lemma 5.4 (Representation Uniqueness) Let (D, P) be an MSR specification.
Then each MSR active role set R reachable in the operational semantics of MSR
can be uniquely reconstructed from its representation actroles(R).

Proof Sketch. Observe that active role sets can contain only elements that can
actually be obtained by (full) instantiation of known roles followed by removal of
some of its rules (after they are executed). We need to consider two cases:

(i) If there is at least one token (left) that represents the active role, then this to-
ken carries the full information, namely 7, A, and N, to determine the initial
role instance. Unfortunately, we need to argue that together all tokens of the
form (Tij A IN) uniquely determine the rules of this active role, i.e., the rules
that still need to be executed. The only potential source of confusion is that
the representation may contain several instances of the same active role 7 ex-
ecuting concurrently with the same values A and IN. Since IN is generated
fresh the confusion can only occur if IV is the empty list, i.e., when the role
does not have any existential quantifiers. Because of the restricted format of
MSR specifications (existential predicates are used to sequentialize the rules
inside a role) this means that the role can only have a single rule, and hence it
can be in only one state, namely the state after it has been instantiated but not
executed.

(i1) In case there is no token (left) that represents the active role, the role must have
been fully executed, and hence by definition of our operational semantics for
MSR it cannot be part of the active role set. Hence, again its contribution to
the active role set is uniquely determined. U

Lemma 5.5 Let (D, P) be an MSR specification, let S, S’ be MSR states, and let
R, R' be MSR active roles sets. Then for all n, k& we have the following equiva-
lences:

There are MSR contexts X", ¥ s.t. D, P + [S]& — an [9')E iff
context(D), roles(P) F 1 [ai] : (union ((F (s™ 0)), stat;(S), actroles(R))) =
(union ((F (s™** 0)), state(S"), actroles(R'))),
There are MSR contexts ¥°, X" * gt D, P I [S]|& I ppN [S"]E, iff
context(D), roles(P) = ! [aij] : (union ((F (s™ 0)), stat;ﬁ(S), actroles(R))) =
(union ((F (s™** 0)), state(S"), actroles(R'))).
In both statements we identify terms that are structurally equal in context(D).

Proof Sketch. First, an observation that simplifies the proof of both statements of
the lemma: We can verify using the previous lemma that

(union ((F (s™0)), state(S), actroles(R)))

can only represent the MSR state S, the MSR active role set R, and hence only an
MSR configuration [S]& for some dynamic context Y. Similarly,

(union((F (s™** 0)), state(S"), actroles(R')))
can only represent a configuration [S’]% again for some dynamic context ¥'.
13

CERVESATO AND STEHR

To prove the first equivalence of the lemma, note that the left-hand side ex-
presses that role 7 is instantiated for some principal A (if it is generic, otherwise
A is already fixed), the existential quantifiers are instantiated with fresh symbols,
and the corresponding role instance is added to the active role set. According to the
change in the MSR dynamic context on the left-hand side (" becomes X" 1%) k
fresh symbols are generated, which means that the role has £ existential quantifiers.
We need to verify that this step in the operational semantics of MSR is equivalent
to the right-hand side, i.e., to the application of the rewrite axiom labeled a7 (see
definition of role) in RWLDT. Using the freshness invariance lemma is it easy to
see that the existential quantifiers of role ¢ are correctly instantiated using & fresh
terms IN which are generated in this process. Apart from maintaining the freshness
information, the only effect of the rule is that the terms (11 A N),...,(tin A N)
are added to the RWLDT state. This can only correspond to the addition of a new
instance of role ¢ to the active role set.

For the second equivalence of the lemma, note that the left-hand side expresses
that an instance of role ¢ is selected from the active role set and its rule j, which is
of the form rurE j : VX : U. M — JY : V. N, is executed. According to
the change in the dynamic MSR context on the left-hand side (X" becomes Y/"*)
k fresh symbols are generated, which means that the rule has £ existential quanti-
fiers. We again need to verify that this step in the operational semantics of MSR is
equivalent to the right-hand side, i.e., the application of the rewrite axiom labeled
a7 (see definition of rule) in RWLDT. Using the freshness lemma it is easy to
see that the existential quantifiers of rule j are correctly instantiated using £ fresh
terms. Apart from maintaining the freshness information, the rule has two effects:
It replaces the term state(M') by state(N') (the terms M’ and ' N’ are instances
of M and N, respectively), a step precisely corresponding to the execution of the
MSR rule, and it removes the token (175 A IN), which can only correspond to the
fact that the rule is removed from the active role, because it has been executed.

Obviously, for both equivalences the detailed proof would establish a bijection
between the fresh symbols generated by MSR and the fresh terms generated in
RWLDT. O

The following theorem summarizes the statements of the previous lemma:

Theorem 5.6 (Soundness and Completeness) Let (D, P) be an MSR specifica-
tion, let S, S’ be MSR states, and let R, R’ be MSR active roles sets. Then for all
n, k we have the following equivalence:
There are MSR contexts ©",%"* s.t. D, P I [S|& —; [S)& iff
there exists P s.t. context(D), roles(P) +
[P] : (union ((F (s™ 0)), state(S), actroles(R))) =
(union ((F (s™** 0)), state(S"), actroles(R'))),
where we identify terms that are structurally equal in contezt(D).

14

CERVESATO AND STEHR

5.4 Achieving Executability

Unfortunately, the resulting RWLDT specification is not necessarily executable in
the ordinary sense of rewriting, since there may be rules with variables on the right-
hand side that do not appear on the left-hand side and hence cannot be bound by
matching. Therefore, we apply another simple transformation which makes certain
types and their elements explicit in the state by making use of the predicate & : {7 :
Type}T — state. This leads to the following modifications:

e role(i, P,3AL : T . p") =
{Z,Z" : nat }{L : type(T)}fresh(Z, L, T, Z") —
[Ai] : (union((E princ P), (F Z)) =

(union((E princ P), (Til P L), <y (Tin P L), (F Z’)))

rule(i, P, L, T, p}), ..., rule(i, P,L,T, p?).

o rule(i, P,L,T,ruiE j : VX :U. M —3Y : V.N) =
Rij : {P :princH{Z, 7" : nat }{L : type(Tij)}
{X : type(U)HY : type(V) }fresh(Z, Y,V ,Z') —
[aij] : (union (ES, (1ij P L), (F Z), state(M))) =

(union (ES, state(N), (r Z')))
where E'S is a formal multiset containing (£ U7 X7),..., (e UL X7).

The theorem is as before except for that we have to provide a sufficient amount
of explicit typing information (see F.S below) to perform a simulation step:

Theorem 5.7 (Soundness and Completeness) Let (D, P) be an MSR specifica-
tion, let S, S’ be MSR states, and let R, R’ be MSR active roles sets. Then for all
n, k we have the following equivalence:
There are MSR contexts X7, X"k s.t. D, P+ [S]E —; 5 [S')E iff
there exists P, ES s.t. context(D), roles(P) t-
N[P]: (union (ES, (7 (s"0))), state(S), actroles(R))) =

(union (ES, (r (s™** 0)), state(S"), actroles(R')))
where we identify terms that are structurally equal in context(D), and ES is a
formal multiset containing (£ U @) only for terms @) of type U.

Proof Sketch. The only modification to our previous representation (Section B.3)
is that we have added terms of the form (E U Q) to the rewrite axioms, such that as
an obvious invariant these terms are preserved by applications of rewrite axioms.
These terms cannot be confused or interact with any of the terms representing the
MSR configuration, so that the original behavior is preserved (disregarding the
newly introduced terms), assuming that the applicability of rewrite axioms is not
compromised. To guarantee the latter, the theorem has been relaxed w.r.t. the previ-
ous one (Section B.3)) by adding the formal multiset F'S to the state on the left-hand
side of the rewrite judgment (and since ES is preserved it is added on the right-
hand side as well). Since E'S is existentially quantified it can be instantiated by any
sufficient number of terms compensating for the (e U (Q) that are now needed to

15

CERVESATO AND STEHR

apply the rewrite axioms. O

As a slight optimization, the term (£ princ A) in the translation above can be
dropped in the rewrite axiom 2z if it is the translation of an anchored rule, because in
this case A is a constant declared in D and not a variable that needs to be determined
by matching. Furthermore, (e Uj X7) can be dropped from ES in the translation
if X7 occurs in M, because in this case it can be bound by matching.

5.5 Eliminating Intermediate States

A drawback of the operational semantics of MSR defined in terms of the transition
judgment D, P F [S]& —; 5 [S']% and our representation above is that role in-
stantiation can occur anytime and arbitrarily often even if there is no subsequent use
of the role. This is an unnecessary source of nondeterminism and nontermination
and without any other means to control the execution it would prevent symbolic
execution and analysis.

By considering a slightly more abstract semantics that composes role instantia-
tion with the execution of a rule of this role, we can eliminate such superfluous in-
termediate states. For the modified operational semantics of MSR we write D, P -
[S1& — ()i [S")& iff there exists a role i with a rule j (and 4, N) s.t.

* D, P [SIf —pan [N and D, P+ (S — pan [S"1 or
* D,PHI[SIE —pan [S"1E.
Our representation will be modified correspondingly as follows:
e role(i, P,3AL : T. p") =
ruley (i,n, P, L, p}), rules(i,n, P, L, p%), ...,
rule, (i,n, P, L, pI'), rules(i,n, P, L, pI').
e ruley(i,n, P, L, T,rute j : VX : U. M — 3JY : V. N) =
Rijl : {P :princ}{Z,Z', Z" : nat }{L : type(T)}
{X : type(U)HY : type(V)}
fresh(Z,L,T,Z"), fresh(Z', Y,V ,Z") —
[271] : (union ((E princ P), ES, (F Z), state(M))) =
(union ((E princ P), ES, state(N), TS, (7 Z")))
where 7'S is the formal multiset containing
(til1 P L) ... (tin P L) with (1ij P L) removed.
e rules(i,n, P L, T,rute j : VX :U. M — 3JY : V.N) =
Rij2: {P :princ}{Z,Z', Z" : nat }{L : type(T)}
{X : type(U) Y : type(V)}fresh(Z, Y,V ,Z') —
[2ij2] : union (ES, (1ij P L), (F Z), state(M)) =
union (ES, state(N), (7 Z'))
The idea behind these definitions is that the rewrite axiom labelled rzj1 generated

by rule; simulates the effect of instantiating role s immediated followed by the ex-
ecution of one of its roles, which is j in this case. As a consequence it generates

16

CERVESATO AND STEHR

the formal multiset of tokens (t¢1 P L) ... (Tin P L) with (1ij P L) removed,
because the corresponding rule has already been executed. The rewrite axiom la-
belled rij2 generated by rules takes care of the execution of remaining rules, and
hence remains unchanged compared with the previous section.

Now we obtain a result entirely analogous to the previous theorem:

Theorem 5.8 (Soundness and Completeness) Let (D, P) be an MSR specifica-
tion, let S, S’ be MSR states, and let R, R’ be MSR active roles sets. Then for all
n, k we have the following equivalence:
There are MSR contexts X", ¥ s.t. D, P + [S]& —)5 [S]E iff
there exists P, ES s.t. context(D), roles(P)
[P]: (union (ES, (7 (s™0)), state(S), actroles(R))) =

(union (ES, (r (s™* 0)), state(S"), actroles(R'))),
where we identify terms that are structurally equal in context(D), and ES is a
formal multiset containing (E U) only for terms @) of type U.

Proof Sketch. The only difference w.r.t. the previous theorem is that we use the
new judgment D, P + [S]8 —s 15 [S"]%, as the operational semantics of MSR.
By definition there are two cases to consider:

(1) There is a role 7 with a rule ;7 such that
D,PF[SIE — an [SNE and D, P F [S)E — pan [S"E.
i 2,

Observe that we are concerned with a sequential composition of the judgments
that we represented in our previous representation (Section B.4). Omitting
quantifiers and conditions for clarity, the first judgment was represented by
the rewrite axiom
[Ai] : (union((E princ P), (F Z)) =

(union((E princ P), (T’il P L), cey (Tin P L), (F Zl))),
and the second judgment was represented by the rewrite axiom
[aij] : (union (ES,(1ij P L), (r Z'), state(M))) =

(union (ES, state(N), (r Z"))).
Consequently, our new representation (see definition of rule;) uses the se-
quential composition of these two:
[271] : (union ((E princ P), (F Z), ES, state(M))) =
(union ((E princ P), TS, ES, state(N), TS, (7 Z"))),

where TS is the formal multiset containing (131 P L) ... (Tin P L) with
(tij P L) removed.

(ii) There is a role ¢ with a rule j such that D, P + [S]|& AN [S"]E,.
For this case, we just need to simulate the execution of a rule. Hence, the
rewrite axiom (see definition of rules) is as in the previous representation:
[272] : union (ES, (1ij P L), (r Z), state(M)) =
union (ES, state(N), (7 Z')).
O
As an optimization, the rewrite axiom Rrzj1 can be omitted if M contains any

17

CERVESATO AND STEHR

of the variables in L. The reason is that we have the invariant (for the reachable
states we are concerned with in the theorem) that the variables L are instantiated
by objects which do not exist in the state, so that this axiom could never be applied.

Another obvious optimization is to omit the rewrite axiom Rzj when the role ¢
contains only a single rule. This optimization relies on the fact that in this case T4j
can never appear in the state, an invariant that holds for the reachable states we are
concerned with in the theorem. More generally, we drop any rule that depends on
a 777 that is never generated. This can happen, because the only rule that generates
177 has been eliminated by previous optimizations.

6 Translation in our Example

Returning to the Otway-Rees protocol and its specification in MSR, we now illus-
trate how its responder role (role number 2) is translated into RWLDT. For brevity,
we omit all declarations, except the ones for the network predicate, message con-
catenation (denoted _, _ in MSR), and the encryption function, (which was written
as {_}_in MSR):
N : msg —> state
append : msg —> msg —> msg
encrypt : {A,B : princ} msg —-> (shK A B) —-> msg
As for union, we write (append (Mi,...,M,)) to abbreviate (append M;
(append (M, ..., My,))).

We have the following coercions (to which we have given longer names here):

nonce-msg : nonce -—> msg
princ-msg : princ -> msg
1tK-shK : {A,B : princ} (1tK A B) -> (shK A B)
stK-shK : {A,B : princ} (stK A B) -> (shK A B)

We also declare the following injections as required by the translation to gener-
ate fresh symbols of the target type:

NONCE : nat —-> nonce
L2 : nat -> ({B : princ} princ ->
nonce —> nonce —> (ltK B S) —> state)

Finally, we declare token constructors relevant for the responder role:

T21 : princ -> ({B : princ} princ ->

nonce —-> nonce —> (ltK B S) —-> state) -> state
T22 : princ -> ({B : princ} princ ->
nonce —-> nonce —> (1ltK B S) —-> state) —-> state

The translation of the responder role produces four rewrite rules, but two of
them can be eliminated by our optimizations:
R211 : !'! {B:princ}
{L:{B:princ} princ -> nonce -> nonce -> (ltK B S) -> state}
{A:princ}{kBS: (1tK B S) } {X:msqg}
{fresh, fresh’ :nat} {n,nB:nonce}

18

CERVESATO AND STEHR

(L := (L2 fresh)) -—>

(nB := (NONCE (suc fresh))) —-—>

(fresh’” := (suc fresh)) —-—>

[A211] : (union ((E (l1tK B S) kBS), (F fresh),
(N (append ((nonce-msg n),

(

(princ-msg A),
(princ-msg B),
X)))))

=> (union ((E (1tK B S) kBS), (F fresh’),

(N (append (n,A,B,X,
(encrypt (append ((nonce-msg nB),
(nonce-msg n),
(princ-msg A),
(princ-msg B)))
(1tK-shK B S kBS))))),
(L B A n nB kBS),
(T22 B L)))
R222 : !! {B:princ}
{L:{B:princ} princ -> nonce -> nonce -> (ltK B S) —-> state}

{A:princ}{kBS: (1tK B S) }{kAB: (stK A B) }{Y:msg}{n,nB:nonce}

[A222] : (union ((N (append ((nonce-msg n),Y,
(encrypt (append ((nonce-msg nB),
(stK-msg A B kAB)))
(1tK-shK B S kBS))))),
(L B A n nB kBS),
(T22 B L)))
=> (N (append ((nonce-msg n),Y)))

The justification for eliminating r221 is that it contains (L. B A n nB kBS)
with L fresh on its left-hand side. Since r212 depends on (T21 B L), which
could only be generated by rR221, this rule can be dropped as well.

The full RWLDT specification successfully passes the OCC type checker, which
implies that the original MSR specification is type-correct as well. The OCC pro-
totype can further be used to explore the dynamics of the protocol. For example, to
restrict the protocol execution to one instance of each role and to observe termina-
tion we add sTART: and TERMINATED? tokens to respectively the first and last rules
of each role 7.

A:princ . B:princ . kAS: (1ltK A S) . kBS: (1ltK B S)

rew (union ((F 0), (E P A), (E P B),
(E (ltK A S) kAS), (E (1tK B S) kBS),
(START1 A), (START2 B), (START3 S)))
trace:
Al111 A211 A311 A222 Al22
result:
(union ((F 6),(E P A), (E P B),
(E (LtK A S) kAS), (E (1tK B S) kBS),
(TERMINATED1 A), (TERMINATED2 B), (TERMINATED3 S)))

19

CERVESATO AND STEHR

After starting the symbolic execution the system performs a series of actions each
corresponding to the application of a rule. Finally, the terminating state is reached,
the explicit type information is preserved, and six fresh constants have been used.
An exploration of the state space using Maude shows that the above execution is
the only possible one from the given initial state.

7 Final Remarks

In this paper we have presented a shallow and hence efficient embedding from MSR
into rewriting logic with dependent types (RWLDT), which has been introduced as
a restricted instance of the open calculus of constructions (OCC). This mapping
forms the basis for an ongoing implementation of an MSR execution and analysis
environment. A mapping from RWLDT into RWL has already been implemented
as part of the OCC prototype in Maude. This enabled us to perform symbolic
execution of the translated MSR specification in our example. The user interaction
takes place at the level of RWLDT terms, which directly correspond to MSR terms,
and hence the user does not need to be concerned with the resulting translation into
RWL. A similar interface for symbolic search and model checking would be easy
to implement. At the moment, we can however already export the RWL translation
of the RWLDT specification and perform symbolic search and model checking at
the level of Maude.

For the sake of clarity we made a number of simplifying assumptions in this
paper. We decoupled the issue of inferring implicit parts of an MSR specification
from the actual translation phase, which is exactly the way we would like to or-
ganize the architecture of the translator. We also assumed the absence of name
clashes, an assumption that is not necessary if we use the CINNI explicit substitu-
tion calculus [[13414]] and its term representation. In fact the theory and prototype
for OCC are already based on this calculus.

An additional feature of MSR that may require changes to our representation
are constraints, i.e., conditions attached to MSR rules. Constraints do not appear
in [4)5]], but have proved useful, for instance, in the Kerberos analysis [3]]. Among
the options are the direct translation into conditional rules of RWLDT, the extension
of the linear state by a non-linear counterpart (as in standard sequent presentations
of linear logic) and its use to verify the constraints, or a combination of these two
possibilities. Equations are a recent addition to MSR, inspired by this collaboration.
They can be directly mapped to the computational equations of RWLDT. Further
extensions of MSR, such as moving to richer executable fragments of linear logic
in the style of CLF [[16], a direction currently investigated by the first author, seem
to require deeper embedding of MSR into RWLDT, an interesting topic that we
leave for future research.

An important part of MSR, the data access specification [6]], has not been treated
in this paper, because a sufficiently generic and concise formulation is still subject
of ongoing work. Our most recent idea to formalize the data access specification is
to use predicates inside the type theory to express the accessibility of information

20

CERVESATO AND STEHR

relative to principals. In combination with the assertional propositions of RWLDT
this may simplify the representation of data access rules significantly and would
provide a great deal of flexibility. Furthermore, the proof that the data access spec-
ification is satisfied would become an object inside the type theory. In fact, the
logical nature of RWLDT is far from being fully exploited so far, which leads us to
the last point of the conclusion.

In addition to the automatic symbolic analysis techniques mentioned above, our
two-level architecture opens the door to performing formal reasoning at the level of
RWLDT, which contains all the type information of the original MSR specification
and uses practically the same term syntax. Indeed, interactive theorem proving is
supported by OCC [14], but to make use of it our translation needs to be enriched
to make explicit the inductive nature of MSR, which can be achieved essentially
by adding suitable elimination/induction principles. Formal reasoning would ulti-
mately rely on the model-theoretic semantics of OCC, but it can use its operational
semantics to enhance the expressivity of types and to provide partial automation in
proofs.

See http://formal.cs.uiluc.edu/stehr/msr.html for the complete
specification of the Otway-Rees example, other examples, and recent progress on
the project.

Acknowledgment. The research reported has been conducted in the scope of the
CONTESSA project http://formal.cs.uiuc.edu/contessa. The first au-
thor is partially supported by NRL under contract NOO173-00-C-2086. The second
author is supported by ONR Grant N00014-02-1-0715.

References

[1] H. P. Barendregt. Lambda-calculi with types. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Background: Computational Structures, volume 2 of
Handbook of Logic in Computer Science. Claredon Press, Oxford, 1992.

[2] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35-132, 2000.

[3] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov. A Formal Analysis of Some
Properties of Kerberos 5 Using MSR. In Fifteenth Computer Security Foundations
Workshop, pages 175-190. IEEE Computer Society Press, 2002.

[4] I. Cervesato. A specification language for crypto-protocols based on multiset
rewriting, dependent types and subsorting. In Workshop on Specification, Analysis
and Validation for Emerging Technologies, pages 1-22, 2001.

[5] I. Cervesato. Typed MSR: Syntax and examples. In Ist International Workshop on
Mathematical Methods, Models and Architectures for Computer Networks Security,
pages 159-177. Springer-Verlag LNCS 2052, 2001.

21

http://formal.cs.uiuc.edu/stehr/msr.html
http://formal.cs.uiuc.edu/contessa

CERVESATO AND STEHR

[6] I. Cervesato. Data Access Specification and the Most Powerful Symbolic Attacker in
MSR. In Software Security, Theories and Systems, pages 384—416. Springer-Verlag
LNCS 2609, 2003.

[7] L. Cervesato. MSR: Language definition and programming environment. Draft
available from http://theory.stanford.edu/ " iliano/MSR/, Nov. 2003.

[8] I. Cervesato, N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A Meta-
Notation for Protocol Analysis. In 12th Computer Security Foundations Workshop,
pages 55-69. IEEE Computer Society Press, 1999.

[9] M. Clavel, F. Duréan, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 2001.

[10] G. Denker and J. K. Millen. CAPSL Intermediate Language. In N. Heintze and
E. Clarke, editors, Proceedings of the Workshop on Formal Methods and Security
Protocols — FMSP, Trento, Italy, 1999.

[11]J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73—155, 1992.

[12] D. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems
Rewiew, 21(1):8-10, January 1987.

[13] M.-O. Stehr. CINNI — A Generic Calculus of Explicit Substitutions and its Application
to A-, o- and w-calculi. In K. Futatsugi, editor, 3rd International Workshop on
Rewriting Logic and its Applications, volume 36 of ENTCS, pages 71 — 92. Elsevier,
2000. http://www.elsevier.nl/locate/entcs/volume36.htmll

[14] M.-O. Stehr. Programming, Specification, and Interactive Theorem Proving —
Towards a Unified Language based on Equational Logic, Rewriting Logic, and Type
Theory. Doctoral Thesis, Universitit Hamburg, Fachbereich Informatik, Germany,
2002. http://www.sub.uni—hamburg.de/disse/810/.

[15] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In From Object-
Orientation to Formal Methods: Dedicated to The Memory of Ole-Johan Dahl, volume
2635 of LNCS. Springer-Varlag, 2004.

[16] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical
Framework I: Judgments and Properties. Technical Report CMU-CS-02-101,
Department of Computer Science, Carnegie Mellon University, 2003.

22

http://www.elsevier.nl/locate/entcs/volume36.html
http://www.sub.uni-hamburg.de/disse/810/

	Introduction
	Notation
	The MSR Cryptoprotocol Specification Language
	Rewriting Logic with Dependent Types
	Mapping MSR to RWLDT
	Initial Context
	Translating Kinds, Types, Terms, States, and Contexts
	Translating Roles and Rules
	Achieving Executability
	Eliminating Intermediate States

	Translation in our Example
	Final Remarks
	References

